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Abstract

The laminar natural convection from an isothermal horizontal cylinder con®ned between vertical walls, at low
Rayleigh numbers, is investigated by theoretical, experimental and numerical methods. The height of the walls is

kept constant, however, their distance is changed to study its e�ect on the rate of the heat transfer. Results are
incorporated into a single equation which gives the Nusselt number as a function of the ratio of the wall distance to
cylinder diameter, t=D, and the Rayleigh number. There is an optimum distance between the walls for which heat

transfer is maximum. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the objectives of the investigation about

natural convection in the recent years has been to

explore the applications of the electric cooling. Natural

convection from di�erent geometries are studied and

techniques are developed to enhance the rate of heat

transfer.

One of the geometries which has received consider-

able attention has been an isothermal horizontal cylin-

der con®ned between vertical walls.

Marsters [1] was the ®rst to address this problem

systematically, using both experimental and analytical

methods. His experimental results cover a vast range

of Rayleigh numbers. He studied the e�ects of changes

in the height and spacing of the walls, on the Nusselt

number. He did not observe any optimum wall spacing
for the maximum Nusselt number.

The second investigation was the numerical work of
Gucceri and Farouk [2]. They used the ®nite di�erence
method to solve the energy and momentum equations

in the stream vorticity form. They observed a mixed
heat transfer behavior from the cylinder, regarding the
e�ects of the wall spacing, depending on the values of

the Rayleigh number.
Pfeil and Sparrow [3] studied the problem exper-

imentally. They generated ®fteen sets of data by chan-
ging the wall height and spacing. They observed that

the rate of heat transfer from the cylinder increased
with reduction in the distance between the walls. This
e�ect was more noticeable for the smaller Rayleigh

numbers. They did not observe any optimum wall
spacing, though.
Karim et al. [4] studied the problem, experimentally,

and presented a correlation for the Nusselt number.
They did not observe any optimum wall spacing,
either.

Sadeghipour and Kazemzadeh [5] investigated the
transient natural convection from a con®ned isother-
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mal cylinder, numerically. They solved their problem

for one Rayleigh number �Ra � 1000), and pre-

sented the variation of Nusselt number with time.

They observed an optimum wall distance to cylinder

diameter ratio for the maximum heat transfer.

Finally, Ma et al. [6] studied the e�ects of vari-

ation in the vertical location of the cylinder on its

rate of heat transfer, numerically. They too,

observed mixed behavior.

In this paper, we are presenting the results of

our theoretical, numerical and experimental investi-

gations of the steady state natural convection from

an isothermal cylinder con®ned between two adia-

batic vertical walls, for low Rayleigh numbers

�Ra � 650±1000). The height of the walls is kept

constant �H=D � 7), and the e�ects of the changes

in the wall spacing on the rate of heat transfer are

determined.

The limiting cases of t=D41 and t=D41 are

addressed in the analytical section. Then, sets of the

numerical and experimental data are generated for the
rate of heat transfer for di�erent values of t=D and
Ra.

Results are incorporated into a single correlation
which gives the variation of Nu with t=D and Ra for
H=D � 7:

2. Problem description

The problem under investigation is heat transfer
from horizontal isothermal cylinder con®ned between

two vertical adiabatic walls. Fig. 1 shows the geometry
and the con®guration of the problem. Problem is
assumed to be two-dimensional, with no variation of

the conditions along the cylinder. The parameters
which are kept constant during the investigation are
the cylinder's diameter, D, the height of the walls, H,

Nomenclature

A heat transfer area of cylinder
CD drag coe�cient for cylinder
Cp thermal capacitance

C1 coe�cient in momentum equation
C '1 modi®ed C1 coe�cient
C2 coe�cient in energy equation

C '2 modi®ed C2 coe�cient
C3 coe�cient of dissipation loss in energy

equation

D diameter of cylinder
f friction factor
F radiation shape factor
g acceleration due to gravity

GrD �� gbDTsD
3=n 2�, Grashof number

H height of adiabatic walls
h heat transfer coe�cient

k thermal conductivity of air
L length of cylinder
_m mass ¯ow rate

Nu Nusselt number
Nu modi®ed Nusselt number
p pressure

Pr Prandtl number
_Q total rate of heat transfer from cylinder
Qconv rate of heat transfer from the cylinder by

convection

RaD Rayleigh number
ReD Reynolds number
t wall spacing

T temperature
u� (=a/D ), reference velocity

u, v components of ¯uid velocity
x, y space variables measured from inlet to the

wall region (nondimensionalized with respect

to H and t )
x 0, y 0 space variables measured from center of

cylinder (nondimensionalized with respect to

D )

Greek symbols

b volumetric expansion coe�cient
e emissivity
Z modi®ed wall spacing to cylinder diameter

ratio

n kinematic viscosity
r density
s Stephan±Boltzman constant

t shear stress on the wall

Subscripts

1 inlet condition
2 outlet condition
1 ambient

w wall condition
s surface of cylinder

Superscripts

^ dimensionless quantities, with respect to H
and t

0 dimensionless quantities, with respect to D

� reference velocity
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and the vertical location of the cylinder. The variable
quantities have been the distance between the walls, t,

and the cylinder's surface temperature, Ts:

3. Analytical solution

In this investigation, the Marsters [1] integral

method was used to develop an analytical solution for
the heat transfer behavior of the con®ned cylinder for
the two extremes of t=D41 and t=D41: Then the

idea of intersection of asymptotes was utilized to show
the existence of an optimum spacing for maximum
rate of heat transfer. This technique has been put for-
ward and has been successfully used for both natural

and forced convection by Bejan [7±10] and used by
others [11].
The governing continuity, momentum and energy

equations are written ®rst. For continuity of the ¯ow
between the inlet and outlet Section 1 and Section 2,
we have;

r1u1t �
�t=2
ÿt=2

r2u2 dy

and by changing the variable y as;

ŷ � y

t

the continuity equation is written as;

_m � r1u1t � t

�ÿ1=2
1=2

r2u2 dŷ �1�

The momentum equation, a balance between the buoy-

ancy force, the chimney e�ects and the friction forces
on the con®ning walls and on the cylinder, with the
momentum changes, is written as;

�p1 ÿ p2 �tÿ
�H
0

t dxÿ CD
1

2
r1u

2
1 D

ÿ gr1

�H
0

�t=2
ÿt=2

r
r1

dy dx

�
�t=2
ÿt=2

r2u
2
2 dyÿ _mu1 �2�

On the other hand, the inlet and outlet pressures can
be written as;

p1 � p1 ÿ 1

2
r1u

2
1 �3�

p2 � p1 ÿ r1gH �4�

Fig. 1. Con®guration of the problem and the coordinate systems �H1 � 3D, H2 � 4D).
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Introducing Eqs. (3) and (4) and changing the vari-
able x as x̂ � x=H, Eq. (2) can be written as;

gH

u 2
1

 
1ÿ

�1
0

�1=2
ÿ1=2

r
r1

dŷ dx̂

!
ÿ
�
1

2
� 1

2
CD

D

t

�

ÿH
t

�1
0

t�x̂� dx̂
r1u

2
1

�
�1=2
ÿ1=2

r2u
2
2

r1u
2
1

dŷÿ 1 �5�

De®ning r as;

r � r1�1ÿ bDT�
where

DT � Tÿ T1

In Eq. (5), the momentum equation can ®nally be writ-
ten as

GrD

Re 2
D

� H
D

�1
0

�1=2
ÿ1=2

DT
DTs

dx̂ dŷÿ 1

2

�
1� CD

D

t

�

ÿH
t

�1
0

t
r1u

2
1

dx̂ �
�1=2
ÿ1=2

 
r2u

2
2

r1u
2
1

ÿ 1

!
dŷ �6a�

where

ReD � u1D

n
�6b�

GrD � gbDTsD
3

n 2

The energy equation expresses a balance between the
heat transfer from the cylinder and changes in the ¯ow

energy between the inlet and the outlet. This equation
is, then, written as;

_Q � tCp

�1=2
ÿ1=2

r2u2T2 dŷÿ tCp

�1=2
ÿ1=2

r1u1T1 dŷ

� t

2

�1=2
ÿ1=2

r2u
3
2 dŷÿ t

2

�1=2
ÿ1=2

r1u
3
1 dŷ

� gt

�1=2
ÿ1=2

r2u2x 2 dŷÿ gt

�1=2
ÿ1=2

r1u1x 1 dŷ �7�

Since x 2 ÿ x 1 � H, Eq. (7) can be rearranged as;

Nu

Pr ReD

�
D

t

�
� T1

DTs

�1=2
ÿ1=2

�
r2u2T2

r1u1T1
ÿ 1

�
dŷ

� u 2
1

2CpDTs

�1=2
ÿ1=2

 
r2u

3
2

r1u
3
1

ÿ 1

!
dŷ� gH

CpDTs

�8�

where;

_Q � pDhDTs

and

Nu � hD=k

Two extreme cases are considered for this problem
which are t=D41 and t=D41: Now, we will simplify

the governing equations for these two cases.

a Ð The limit t=D41
As the distance between con®ning walls is increased,
their e�ect on the rate of heat transfer from the
cylinder vanishes, gradually. For t=D41 the sol-
ution of this problem should eventually approach

that of heat transfer from a single cylinder with no
con®ning walls.
In this case, neglecting the inertia, the buoyancy

force should balance the friction force on the cylin-
der,

C1
GrD

Re 2D
� H
D

11

2
CD

D

t
�9�

where

C1 �
�1
0

�1=2
ÿ1=2

DT
DTs

dŷ dx̂

Choosing the proper value for CD [12], Eq. (9) can

be arranged as;

GrD � 2:742

C1
Re1:75D

�
D

t

��
D

H

�
�10�

The Nusselt number for a single isothermal cylinder
is given as [13];

Nu � 0:85Ra0:188 �11�
By neglecting the kinetic and potential energy
e�ects in the energy equation (8), the Nusselt num-
ber may be obtained as;

Nu � t

D
ReDPr

T1

DTs

C2 �12�

The Nusselt number in Eq. (12) should approach
a constant value for the limit t=D41: For this, we
should have;

ReD �
�
t

D

�ÿ1
1

C2PrT1

�
DTs

�
�
t

D

�ÿ1
1
C 0

2
�13�

where

C2 �
�1=2
ÿ1=2

�
r2u2T2

r1u1T1
ÿ 1

�
dŷ �14a�

C 02 � C2Pr
T1

DTs

�14b�
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Substituting ReD from Eq. (13) into Eq. (10) gives;

Ra � Pr GrD � Pr
2:742

C1C 0 1:752

�
t

D

�ÿ2:75�
D

H

�
�15�

Substituting for Ra in Eq. (11) from Eq. (15), it
becomes;

Nu � 1:027

C 0 0:1881 C 0 0:3292

� 1ÿ
t
D

�0:517ÿH
D

�0:188 �16�

where

C 01 �
C1

Pr
�17�

Eq. (17) shows that, for the limiting case of
t=D41, the Nusselt number is inversely pro-
portional to �t=D�0:517: Therefore, the larger the

value of t=D, the lower will be the Nusselt number.

b Ð The limit t=D41

In this limit, if the con®ning walls are tall enough,
neglecting the inertia, again, the buoyancy force
will balance the friction force of the walls, there-

fore, we have;

GrD

Re 2D

H

D
C11

H

t

�1
0

f

2

ru 2

r1u 2
1

dx̂ �18�

Let

f � 24

Re2t

�19�

After rearranging Eq. (18) we have;

ReD1GrD

�
t

D

� 2
C1

4C3
�20�

where

C3 �
�1
0

ru 2

r1u 2
1

dx̂

Substituting for ReD in the energy equation (8)
from Eq. (20) we have

Nu � C1C4

4C3

T1

DTs

RaD

�
t

D

�3

�21�

What is obvious from Eq. (21) is the high depen-
dence of the Nusselt number on t=D: Nusselt num-

ber increases as the wall spacing increases. Eq. (21)
is very much similar to what is given by Bejan et al.
[10].

3.1. The optimum wall distance

Looking at the results obtained for the two cases `a'

and `b', Eqs. (16) and (21), we observe that for case
`a', Nu decreases as t=D increases. However, for the
case `b', Nu increases with t=D: Therefore, the results

for these two limiting cases intersect at a point where
the rate of heat transfer from the cylinder is maxi-
mum.
Then a relation for the optimum t=D could be

obtained as;

�
t

D

�
opt

�
 

4:108C3

C1:188
1 C1:329

2

!0:285

� 1

Pr0:04�H=D�0:05
�
DTs

T1

�0:285
1

Ra0:285
�22�

Eq. (22) shows that the �t=D�opt decreases as Ra
increases. This probably was the reason why in some
of the investigations at high Rayleigh numbers no opti-
mum wall spacing was observed [1±4].

The interesting observation is the independent
appearance of the Prandtl number in Eq. (22).

4. Numerical solution

4.1. The governing equations

The governing equations for free convection heat
transfer from the cylinder of Fig. 1, in the form of
di�erential equations, are given as

@ ~u

@ ~x
� @ ~n
@ ~y
� 0 �23a�

~u
@ ~n
@ ~x
� ~n

@ ~n
@ ~y
� ÿ@ ~p

@ ~y
� Prr 2 ~n �23b�

~u
@ ~u

@ ~x
� ~n

@ ~u

@ ~y
� ÿ @ ~p

@ ~x
� Prr 2 ~u� Bo ~T �23c�

~u
@ ~T

@ ~x
� ~n

@ ~T

@ ~y
� r 2 ~T �23d�

where the Boussinesq approximation is used for the
buoyancy term in the vertical component of the
momentum equation, and the dimensionless par-
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ameters are de®ned as;

~p � p

ru�2
, ~T � Tÿ T1

Ts ÿ T1
, Bo � gb�Ts ÿ T1�D3

a 2

Pr � n
a
, ~x � x 0

D
, ~y � y 0

D
, ~u � u

u�
, ~v � v

u�

4.2. The boundary conditions

(a) Inlet

~n � @ ~u

@ ~x
� ~T � 0 �24�

(b) Outlet

~n � @ ~u

@ ~x
� @ ~T

@ ~x
� 0 �25�

(c) Con®ning wall

~u � ~n � @ ~T

@ ~y
� 0 26

(d) Symmetry line

~n � @ ~u

@ ~y
� @ ~T

@ ~y
� 0 �27�

(e) On the cylinder

~u � ~n � 0 �28�

~T � 1 �29�
Problem was solved for di�erent wall distance to cylin-
der diameter ratios �t=D � 1:5, 2, 3 and 6) and for

di�erent Rayleigh numbers �Ra � 649, 767, 842, 910
and 1000), but, for one wall height to cylinder diam-
eter ratio �H=D � 7), using the CosMos ®nite element

computer code.
Table 1 shows a comparison between the reported

Nusselt numbers [5] and those calculated in the present

investigation, for Ra � 1000: Agreement of the results
is reasonable.
The number of nodes and elements used for each

case are as given in Table 2.

5. Experimental solution

To verify validity of the numerical results, the same

problem was also considered, experimentally.
Sets of data were generated for Ra1650, 768, 843

and 910 and for the ratios t=D � 1:5, 3, 6, 8, 12 and

1: The H=D ratio was kept constant, equal to 7.

5.1. Experimental setup and measurements

The experimental setup includes a single aluminum
cylinder tube with 400 mm length and 6 and 5.5 mm

external and internal diameters, respectively. This tube
was heated, from inside, by a small electrical resistance
element. Both ends of the cylinder were kept insulated
by end caps. This helped in keeping the temperature

uniform along the cylinder.
This cylinder was mounted on a frame made from

Plexiglas. The con®ning walls were made from wood,

covered with aluminum foil.
Temperature sensors LM35, with 0.58C precision,

were used to measure the cylinder's surface tempera-

ture, the wall temperature and the ambient tempera-
ture. The cylinder's surface temperature was controlled
and kept constant at speci®ed values by measuring the
temperatures at three di�erent axial locations and

averaging the measured values. The surface tempera-

Table 1

Numerically calculated Nusselt number for H=D � 7,

Ra � 1000 and t=D � 1:5, 3 and 6

t/D Nu

Present investigation Reported values [5]

1.5 3.7 3.4

3 3.9 3.9

6 3.5 3.4

Table 2

The number of nodes and elements used in each case

t/D 1.5 2 3 6

Number of nodes 2009 1479 3144 1971

Number of elements 1846 1357 2890 1875
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ture measuring positions were in the middle and at
two di�erent points, 180 mm away, to the left and to

the right of the middle point.
Heat generated in the cylinder dissipated from its

surface either by convection or by radiation. Neglect-

ing the end losses, we can write;

Qelec � Qconv �Qrad �30�
where Qconv and Qrad are heat transfer from the surface

of the cylinder by convection and radiation, respect-
ively.

Qconv � hA�Ts ÿ T1� �31�
and after some manipulation it can be shown that [14],

Qrad � Aes
hÿ
T4

s ÿ T4
1
�ÿ 2F

ÿ
T4

w ÿ T4
1
�i �32�

Therefore, the Nusselt number is de®ned as

Nu � hD

k

�
Qelec ÿ pDLes

hÿ
T4

s ÿ T4
1
�ÿ 2F

ÿ
T4
w ÿ T4

1
�i

pkL�Ts ÿ T1�
�33�

where F is the radiation shape factor [13].
Values of the Nusselt number, calculated by using

the experimental results are presented in Table 3.

Results in the last row of the Table 3, for t=D � 1, is
in a good agreement with values predicted by Eq. (11)
[13], with maximum deviation of 5%.

6. Results and discussion

Sets of numerical and experimental data are gener-
ated and the Nusselt number is calculated for di�erent

wall spacing to cylinder diameter ratios and for di�er-
ent Rayleigh numbers. The wall height to cylinder di-
ameter ratio is kept constant at H=D � 7: Some of the

Nusselt numbers are presented in Tables 1 and 3. The

Nusselt numbers are consistent with the reported
values in the literature.

Results of the analytical investigation are used as a
guideline for developing a general equation which
gives the variation of the Nusselt number with t=D and

Ra for the constant value of H=D:
The equation which ®ts the data well, is given as

Nu � 1:251

Z1=2
ÿ
1ÿ eÿ1:236�10

ÿ4Z3:5
�
� 0:75 �34�

where

Nu � Nu

Ra0:188D

�35a�

and

Z � t

D
Ra0:27D �35b�

For the limits of t=D41 and t=D4 t1, Eq. (34) is
simpli®ed as

Nu1RaD�t=D�3 �36�

and

Nu1Ra0:188D �37�

respectively, which are very similar to what was con-
cluded from the analytical solution, Eqs. (21) and (11).
Eq. (34) is presented in Fig. 2, graphically, along

with the experimental and numerical data. Agreement
between the calculated and the predicted Nusselt num-
bers is good.

Fig. 2. A comparison between the Nusselt number predicted

by the correlation (34) and the values obtained from the nu-

merical and/or experimental data.

Table 3

The Nusselt numbers calculated using the experimental data

t/D Ra � 649:8 Ra � 767:7 Ra � 842:7 Ra � 910

1.5 2.44 2.91 3.12 3.63

3 3.08 3.42 3.67 4.15

6 3.05 3.25 3.51 3.85

8 3.03 3.16 3.45 3.66

12 2.94 3.04 3.27 3.32

1 2.87 2.96 3.02 3.08
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7. Conclusion

E�ects of adiabatic con®ning walls on the free con-
vection from a horizontal isothermal cylinder are stu-
died analytically, experimentally and numerically. For

the low Rayleigh numbers considered, an optimum
wall to wall spacing was obtained for the maximum
rate of heat transfer from the cylinder.

The analytical solution which is for the limits of
t=D41 and t=D41 are used as a guideline to in-
corporate the experimental and numerical results into

a single correlation for the average Nusselt number.
This correlation gives the variation of the Nusselt
number with the Rayleigh number and wall to wall
spacing to cylinder diameter ratio. The height of the

walls is kept constant. The Nusselt numbers pre-
dicted from the correlation agree well with those cal-
culated from the numerical and/or the experimental

results.
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